Extending March's Exploration and Exploitation: Managing Knowledge in Turbulent Environments

David A. Bray and Michael J. Prietula Goizueta Business School Emory University

2007 International Conference on Information Systems

Seminal Model by March (1991)

- Organizational learning modeled as a balance:
 - exploitation (p1) = reusing existing competences with certain return
 - exploration (p2) = considering new competences with uncertain return
 - exploitation likely to be positive in short-term, negative in long-term

Beauty of a stylized computer model:

- · parsimonious in its design
- allows specific manipulations of values
- conclusive in its qualitative observations

Seminal Model by March (1991)

Individual reality:

- m=30 dimensions, each independent of one another
- can be either {-1}, {0}, {+1}, with {0} as neutral or no opinion
- n=50 individuals in org, each <u>initially with random values</u>

Organizational code:

- m=30 dimensions, each independent of one another
- can be either {-1}, {0}, {+1}
- code represents collective knowledge of the org, initially all {0}

Nuances of the Original Model

Org code and individual knowledge can learn:

Nuances of the Original Model

Organizational learning:

- · neither org code nor individuals directly see true external reality
- org code can only change belief to match best (expert) individual
- yet org may adopt an incorrect dimension from an expert in err

Additional Extensions by March

• Turnover:

- for each iteration, probability (p3) individual will be replaced
- new individual has a random collection of knowledge/beliefs

• Environmental turbulence:

- for each iteration, probability (p4) a dimension of reality will "flip"
- each flip can be from either $\{-1\} \rightarrow \{+1\}$ or from $\{+1\} \rightarrow \{-1\}$

This Study: Extending the Model

- March's model only considered a flat organization:
 - no reporting structure between individuals
 - no use of technology to try and manage knowledge

This Study: Extending the Model

- Consider a reporting structure:
 - org code becomes a manager to a set of (b) reporting individuals
 - each direct report still has a probability (p1) of learning from their manager
 - each manager has a probability (p2) of learning from expert report

This Study: Extending the Model

- Consider a reporting structure:
 - a report can in turn become a manager to other reporting individuals
 - each direct report still has a probability (p1) = exploitation
 - each manager has a probability (p2) = exploration from direct reports

Effects of Multiple Tiers

- Allows for multi-tier organizational hierarchies:
 - what effect does increasing the depth of a hierarchy (d) have?
 - what effects do turnover (p3) and turbulence (p4) have now?

Effects of Knowledge Management

- How to model norms of use of a KM system:
 - collect average knowledge of the top (rEX)% expert individuals
 - make this knowledge available to all managers in org
 - each manager has a probability (pKM) of using org KM system for learning vs. learning from an expert direct report (p2)
- Consider impact of KM on March's model:
 - what effect does increased frequency of use for a KM system have?
 - what effect does including more experts in a KM system have?

Expectations

Expect to find:

- fragmentation of knowledge in a multi-tier hierarchical organization
- multiple tiers lead to inefficient knowledge exchange
- multiple tiers lead to inefficient knowledge flow delay

With KM:

- use of a KM system will counter environmental turbulence
- best norms of use for a KM system will not be heavy (where pKM ≥ 0.5)
- best norms of use for KM will include "top" 1% experts only (vs. rEX ≥ 10%)

Hypotheses[®]

• <u>H1:</u>

 additional tiers in a hierarchy will <u>decrease the accuracy</u> of average individual knowledge levels when an organization opts for a strategy <u>of high exploitation</u> and <u>low exploration</u> in a multi-tier hierarchical organization

• <u>H2a and H2b:</u>

- increasing personnel turnover (within the values of 0.000 to 0.040) will <u>increase</u> the accuracy of average individual knowledge levels
- increasing environmental turbulence (within the values of 0.000 to 0.040) will decrease the accuracy of average individual knowledge levels

Hypotheses

• <u>H3:</u>

 increasing the probability of norms of use and influence of a knowledge management system (pKM) will increase the accuracy of average individual knowledge levels, insomuch that the knowledge management system does not become another source of exploitation

• <u>H4:</u>

 widening the number ratio of expert individuals (rEX) whose consensual knowledge is included in the knowledge management will introduce additional randomness into the system and <u>decrease the accuracy</u> of average individual knowledge levels

Method

- Build simulation per stated extensions:
 - validate simulation matches March's original results
 - then test extensions for a flat and multi-tier hierarchy
 - report observed relationships
- Simulation coded in Microsoft .NET 2003:
 - · creates model exactly as specified
 - outputs results for analysis

Results – Part 1

Effect of Tiers in Hierarchy on Organizational Knowledge Equilibrium in Response to Constant Level of Environmental Turbulence turbulence (p4=0.02) kept constant

turbulence (p4=0.02) kept constant total number of individuals (n=133) kept approx. constant for different tiers in hierarchy (d) bars indicate standard error margin

Results – Part 2

Effect of Frequency of Use and Influence of a KM System on Organizational Knowledge Equilibrium in Response to Constant Level of Environmental Turbulence turbulence (p4=0.02) kept constant, percent "expert" stored consensus (1%) kept constant

urbulence (p4=0.02) kept constant, percent "expert" stored consensus (1%) kept constant tiers in hierarchy (d=4) kept constant, thus total number of individuals kept constant

Results – Part 3

- Considered 6,000 possible organizations:
 - all were random samples drawn from population of all org strategies
 - on average, increasing exploitation has <u>negative</u> consequences for multi-tiered organizations, but not for flat organizations

Coefficients^{a,b}

		Unstandardized Coefficients		Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	.658	.006		117.572	.000		
1	probP1	.170	.014	.300	12.330	.000	.176	5.688
	probP2	.124	.006	.215	21.039	.000	1.000	1.000
	probP3	2.118	.118	.182	17.875	.000	1.000	1.000
1	probP4	-5 646	.118	488	-47.876	.000	.999	1.001
<	interactP1Depth	055	.003	446	-17.104	.000	.153	6.549
	countBreadth	001	.000	297	-21.028	.000	.520	1.922

- a. Dependent Variable: corrOrgCMatch
- b. Weighted Least Squares Regression Weighted by countDepth.

Conclusions

Most noteworthy findings:

- high exploitation and low exploration for a multi-tier hierarchical organization reduces the accuracy of average individual knowledge
- this reduction in accuracy increases <u>as the number of tiers in a hierarchical</u> organization increase
- heavy norms of use for a KM system can become another source of exploitation
- across the board, <u>low exploitation and high exploration</u> represents the optimal strategy for countering environmental turbulence

probP1	.170	.014	.300	12.330	.000	.176	5.688
probP2	.124	.006	.215	21.039	.000	1.000	1.000
probP3	2.118	.118	.182	17.875	.000	1.000	1.000
probP4	-5.646	.118	488	-47.876	.000	.999	1.001
interactP1Depth	055	.003	446	-17.104	.000	.153	6.549
countBreadth	001	.000	297	-21.028	.000	.520	1.922

- a. Dependent Variable: corrOrgCMatch
- b. Weighted Least Squares Regression Weighted by countDepth.

Questions?

David Bray@bus.emory.edu
David A. Bray, PhD Candidate

<u>Prietula@bus.emory.edu</u>
Professor, Goizueta Business School - Emory

http://xhierarch.wiki.sourceforge.net/
Code for simulation (open-source)

